Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
Nat Immunol ; 25(2): 294-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238608

RESUMO

Antigen-experienced CD8+ T cells form effector and central memory T cells (TEM and TCM cells, respectively); however, the mechanism(s) controlling their lineage plasticity remains incompletely understood. Here we show that the transcription cofactor Tle3 critically regulates TEM and TCM cell fates and lineage stability through dynamic redistribution in antigen-responding CD8+ T cell genome. Genetic ablation of Tle3 promoted CD8+ TCM cell formation at the expense of CD8+ TEM cells. Lineage tracing showed that Tle3-deficient CD8+ TEM cells underwent accelerated conversion into CD8+ TCM cells while retaining robust recall capacity. Tle3 acted as a coactivator for Tbet to increase chromatin opening at CD8+ TEM cell-characteristic sites and to activate CD8+ TEM cell signature gene transcription, while engaging Runx3 and Tcf1 to limit CD8+ TCM cell-characteristic molecular features. Thus, Tle3 integrated functions of multiple transcription factors to guard lineage fidelity of CD8+ TEM cells, and manipulation of Tle3 activity could favor CD8+ TCM cell production.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Fatores de Transcrição/genética , Diferenciação Celular , Memória Imunológica/genética
3.
Blood ; 143(2): 166-177, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37871574

RESUMO

ABSTRACT: Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.


Assuntos
Doença Enxerto-Hospedeiro , Receptor de Morte Celular Programada 1 , Camundongos , Animais , Humanos , Receptor de Morte Celular Programada 1/genética , Fosfatidilinositol 3-Quinases , Camundongos SCID , Camundongos Endogâmicos NOD , Doença Enxerto-Hospedeiro/prevenção & controle , Fatores de Transcrição , RNA
4.
Proc Natl Acad Sci U S A ; 120(51): e2313476120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085779

RESUMO

CD62L+ central memory CD8+ T (TCM) cells provide enhanced protection than naive cells; however, the underlying mechanism, especially the contribution of higher-order genomic organization, remains unclear. Systematic Hi-C analyses reveal that antigen-experienced CD8+ T cells undergo extensive rewiring of chromatin interactions (ChrInt), with TCM cells harboring specific interaction hubs compared with naive CD8+ T cells, as observed at cytotoxic effector genes such as Ifng and Tbx21. TCM cells also acquire de novo CTCF (CCCTC-binding factor) binding sites, which are not only strongly associated with TCM-specific hubs but also linked to increased activities of local gene promoters and enhancers. Specific ablation of CTCF in TCM cells impairs rapid induction of genes in cytotoxic program, energy supplies, transcription, and translation by recall stimulation. Therefore, acquisition of CTCF binding and ChrInt hubs by TCM cells serves as a chromatin architectural basis for their transcriptomic dynamics in primary response and for imprinting the code of "recall readiness" against secondary challenge.


Assuntos
Linfócitos T CD8-Positivos , Cromatina , Cromatina/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sítios de Ligação , Genômica
5.
Sci Immunol ; 8(88): eadf2163, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801516

RESUMO

Intraepithelial lymphocytes (IELs), including αß and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.


Assuntos
Neoplasias Colorretais , Linfócitos Intraepiteliais , Camundongos , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Intestino Delgado , Epitélio
6.
Nat Immunol ; 24(10): 1698-1710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592014

RESUMO

In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.


Assuntos
Linfócitos T , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linfócitos T/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Cromatina/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(27): e2302785120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364124

RESUMO

The increasing use of nuclear energy sources inevitably raises the risk of accidental or deliberate radiation exposure and associated immune dysfunction. However, the extent to which radiation exposure impacts memory CD8 T cells, potent mediators of immunity to recurring intracellular infections and malignancies, remains understudied. Using P14 CD8 T cell chimeric mice (P14 chimeras) with an lymphocytic choriomeningitis virus (LCMV) infection model, we observed that sublethal (5Gy) whole-body irradiation (WBI) induced a rapid decline in the number of naive (TN) and P14 circulating memory CD8 T cells (TCIRCM), with the former being more susceptible to radiation-induced numeric loss. While TN cell numbers rapidly recovered, as previously described, the number of P14 TCIRCM cells remained low at least 9 mo after radiation exposure. Additionally, the remaining P14 TCIRCM in irradiated hosts exhibited an inefficient transition to a central memory (CD62L+) phenotype compared to nonirradiated P14 chimeras. WBI also resulted in long-lasting T cell intrinsic deficits in memory CD8 T cells, including diminished cytokine and chemokine production along with impaired secondary expansion upon cognate Ag reencounter. Irradiated P14 chimeras displayed significantly higher bacterial burden after challenge with Listeria monocytogenes expressing the LCMV GP33-41 epitope relative to nonirradiated controls, likely due to radiation-induced numerical and functional impairments. Taken together, our findings suggest that sublethal radiation exposure caused a long-term numerical, impaired differentiation, and functional dysregulation in preexisting TCIRCM, rendering previously protected hosts susceptible to reinfection.


Assuntos
Coriomeningite Linfocítica , Irradiação Corporal Total , Camundongos , Animais , Recidiva Local de Neoplasia , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica , Memória Imunológica , Camundongos Endogâmicos C57BL
8.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752796

RESUMO

Differentiation of effector CD8+ T cells is instructed by stably and dynamically expressed transcription regulators. Here we show that naive-to-effector differentiation was accompanied by dynamic CTCF redistribution and extensive chromatin architectural changes. Upon CD8+ T cell activation, CTCF acquired de novo binding sites and anchored novel chromatin interactions, and these changes were associated with increased chromatin accessibility and elevated expression of cytotoxic program genes including Tbx21, Ifng, and Klrg1. CTCF was also evicted from its ex-binding sites in naive state, with concomitantly reduced chromatin interactions in effector cells, as observed at memory precursor-associated genes including Il7r, Sell, and Tcf7. Genetic ablation of CTCF indeed diminished cytotoxic gene expression, but paradoxically elevated expression of memory precursor genes. Comparative Hi-C analysis revealed that key memory precursor genes were harbored within insulated neighborhoods demarcated by constitutive CTCF binding, and their induction was likely due to disrupted CTCF-dependent insulation. CTCF thus promotes cytotoxic effector differentiation by integrating local chromatin accessibility control and higher-order genomic reorganization.


Assuntos
Cromatina , Genômica , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular/genética , Sítios de Ligação , Linfócitos T CD8-Positivos/metabolismo
9.
Mucosal Immunol ; 16(1): 50-60, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36801171

RESUMO

Colonic macrophages are critical for maintenance of cluster of differentiation 4 T helper (CD4+ T) cell homeostasis in the intestinal lamina propria. However, the mechanisms by which this process is regulated at the transcriptional level remain unknown. In this study, we found that the transcriptional corepressors transducin-like enhancer of split (TLE)3 and TLE4, but not TLE1 or TLE2, in colonic macrophages controlled homeostasis of CD4+ T-cell pool in the colonic lamina propria. Mice lacking TLE3 or TLE4 in myeloid cells exhibited markedly increased numbers of regulatory T (Treg) and T helper (TH) 17 cells under homeostatic conditions, rendering them more resistant to experimental colitis. Mechanistically, TLE3 and TLE4 negatively regulated matrix metalloproteinase (Mmp)9 transcription in colonic macrophages. Tle3 or Tle4 deficiency in colonic macrophages resulted in upregulated MMP9 production and thus enhanced latent transforming growth factor-beta (TGF-ß) activation, which subsequently led to Treg and TH17 cell expansion. These results advanced our knowledge regarding the intricate crosstalk between the intestinal innate and adaptive immune compartments.


Assuntos
Colite , Intestinos , Camundongos , Animais , Fatores de Transcrição , Macrófagos , Linfócitos T Reguladores , Homeostase , Células Th17 , Proteínas Repressoras , Proteínas Correpressoras
10.
Cytometry A ; 103(2): 136-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-33280254

RESUMO

Angiotensin-converting enzyme-2 (ACE2) has been recognized as the binding receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flow cytometry demonstrated that there was little to no expression of ACE2 on most of the human peripheral blood-derived immune cells including CD4+ T, CD8+ T, activated CD4+ /CD8+ T, Tregs, Th17, NKT, B, NK cells, monocytes, dendritic cells, and granulocytes. There was no ACE2 expression on platelets and very low level of ACE2 protein expression on the surface of human primary pulmonary alveolar epithelial cells. The ACE2 expression was markedly upregulated on the activated type 1 macrophages (M1). Immunohistochemistry demonstrated high expressions of ACE2 on human tissue macrophages, such as alveolar macrophages, Kupffer cells within livers, and microglial cells in brain at steady state. The data suggest that alveolar macrophages, as the frontline immune cells, may be directly targeted by the SARS-CoV-2 infection and therefore need to be considered for the prevention and treatment of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Macrófagos Alveolares , Angiotensinas
11.
J Immunol ; 209(12): 2269-2278, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36469845

RESUMO

T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Fator de Ligação a CCCTC/genética , Cromatina/genética , Proteínas de Ciclo Celular/metabolismo , Genoma , Cromossomos , Diferenciação Celular/genética
12.
Nat Commun ; 13(1): 6107, 2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245043

RESUMO

Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.


Assuntos
Autorrenovação Celular , Leucemia Mieloide Aguda , Humanos , Autorrenovação Celular/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Nat Immunol ; 23(8): 1222-1235, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882936

RESUMO

CD8+ T cell homeostasis is maintained by the cytokines IL-7 and IL-15. Here we show that transcription factors Tcf1 and Lef1 were intrinsically required for homeostatic proliferation of CD8+ T cells. Multiomics analyses showed that Tcf1 recruited the genome organizer CTCF and that homeostatic cytokines induced Tcf1-dependent CTCF redistribution in the CD8+ T cell genome. Hi-C coupled with network analyses indicated that Tcf1 and CTCF acted cooperatively to promote chromatin interactions and form highly connected, dynamic interaction hubs in CD8+ T cells before and after cytokine stimulation. Ablating CTCF phenocopied the proliferative defects caused by Tcf1 and Lef1 deficiency. Tcf1 and CTCF controlled a similar set of genes that regulated cell cycle progression and promoted CD8+ T cell homeostatic proliferation in vivo. These findings identified CTCF as a Tcf1 cofactor and uncovered an intricate interplay between Tcf1 and CTCF that modulates the genomic architecture of CD8+ T cells to preserve homeostasis.


Assuntos
Linfócitos T CD8-Positivos , Transdução de Sinais , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Genômica , Homeostase
15.
Front Immunol ; 13: 845488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371057

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição TCF/genética , Fatores de Transcrição/metabolismo
16.
Nat Immunol ; 23(3): 386-398, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190717

RESUMO

The mechanisms underlying the heightened protection mediated by central memory CD8+ T (TCM) cells remain unclear. Here we show that the transcription factor Tcf1 was required in resting TCM cells to generate secondary effector CD8+ T cells and to clear pathogens during recall responses. Recall stimulation of CD8+ TCM cells caused extensive reprogramming of the transcriptome and chromatin accessibility, leading to rapid induction of glycolytic enzymes, cell cycle regulators and transcriptional regulators, including Id3. This cluster of genes did not require Tcf1 in resting CD8+ TCM cells, but depended on Tcf1 for optimal induction and chromatin opening in recall-stimulated CD8+ TCM cells. Tcf1 bound extensively to these recall-induced gene loci in resting CD8+ TCM cells and mediated chromatin interactions that positioned these genes in architectural proximity with poised enhancers. Thus, Tcf1 preprogramed a transcriptional program that supported the bioenergetic and proliferative needs of CD8+ TCM cells in case of a secondary challenge.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL
17.
Nat Rev Immunol ; 22(3): 147-157, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34127847

RESUMO

TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.


Assuntos
Linfócitos T CD8-Positivos , Epigênese Genética , Diferenciação Celular , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito , Humanos
18.
Sci Adv ; 7(47): eabj0512, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788095

RESUMO

Somatic mutations in APC or CTNNB1 genes lead to aberrant Wnt signaling and colorectal cancer (CRC) initiation and progression via-catenin­T cell factor/lymphoid enhancer binding factor TCF/LEF transcription factors. We found that Lef1 was expressed exclusively in Apc-mutant, Wnt ligand­independent tumors, but not in ligand-dependent, serrated tumors. To analyze Lef1 function in tumor development, we conditionally deleted Lef1 in intestinal stem cells of Apcfl/fl mice or broadly from the entire intestinal epithelium of Apcfl/fl or ApcMin/+ mice. Loss of Lef1 markedly increased tumor initiation and tumor cell proliferation, reduced the expression of several Wnt antagonists, and increased Myc proto-oncogene expression and formation of ectopic crypts in Apc-mutant adenomas. Our results uncover a previously unknown negative feedback mechanism in CRC, in which ectopic Lef1 expression suppresses intestinal tumorigenesis by restricting adenoma cell dedifferentiation to a crypt-progenitor phenotype and by reducing the formation of cancer stem cell niches.

19.
Front Immunol ; 12: 738958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721405

RESUMO

Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Homólogo 5 da Proteína Cromobox/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Melanoma Experimental/metabolismo , Neuroblastoma/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox/genética , Proteínas Cromossômicas não Histona/genética , Técnicas de Cocultura , Feminino , Regulação Neoplásica da Expressão Gênica , Imunoterapia Adotiva , Subunidade alfa de Receptor de Interleucina-21/genética , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral , Microambiente Tumoral
20.
Nat Commun ; 12(1): 5863, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615872

RESUMO

T cell identity is established during thymic development, but how it is maintained in the periphery remains unknown. Here we show that ablating Tcf1 and Lef1 transcription factors in mature CD8+ T cells aberrantly induces genes from non-T cell lineages. Using high-throughput chromosome-conformation-capture sequencing, we demonstrate that Tcf1/Lef1 are important for maintaining three-dimensional genome organization at multiple scales in CD8+ T cells. Comprehensive network analyses coupled with genome-wide profiling of chromatin accessibility and Tcf1 occupancy show the direct impact of Tcf1/Lef1 on the T cell genome is to promote formation of extensively interconnected hubs through enforcing chromatin interaction and accessibility. The integrative mechanisms utilized by Tcf1/Lef1 underlie activation of T cell identity genes and repression of non-T lineage genes, conferring fine control of various T cell functionalities. These findings suggest that Tcf1/Lef1 control global genome organization and help form intricate chromatin-interacting hubs to facilitate promoter-enhancer/silencer contact, hence providing constant supervision of CD8+ T cell identity and function.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Genômica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Animais , Diferenciação Celular , Fator 1-alfa Nuclear de Hepatócito/genética , Imunogenética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...